Electric Vehicles

Nowadays people have more varied choices in buying vehicles and cars. As now they have the option of electric vehicles. But what exactly electric vehicle is? In simple words an electric vehicle, or EV, is a vehicle with one or more electric motors for propulsion. Thus, the motion may be provided either by wheels or propellers driven by rotary motors, or in the case of tracked vehicles, by linear motors.

The energy used to propel these kind of can be obtained from various sources such as:

1. From chemical energy stored on the vehicle in on-board batteries: Battery electric vehicle

2. From both an on-board rechargeable energy storage system (RESS) and fueled propulsion power source: hybrid vehicle

3. Generated on-board using a combustion engine, as in a diesel-electric locomotive

4. Generated on-board using a fuel cell: fuel cell vehicle

5. Generated on-board using nuclear energy, on nuclear submarines and aircraft carriers

6. From more esoteric sources such as flywheels, wind and solar

7. From a direct connection to land-based generation plants, as is common in electric trains and trolley buses

Electric vehicles generally use electric motors used to drive vehicles because they can be finely controlled, they deliver power efficiently and they are mechanically very simple. Moreover these electric motors often achieve 90% conversion efficiency over the full range of speeds and power output and can be precisely controlled. Thus it won’t be wrong to say that these electric motors can provide high torque while an electric vehicle is stopped, unlike internal combustion engines, and do not need gears to match power curves.

These days electric vehicle is designed in two ways those are Battery Electric Vehicles and Hybrid vehicles. Battery Electric Vehicles covert chemical energy to electrical energy in batteries; whereas Hybrid vehicles, which convert chemical energy to electrical energy via an internal combustion engine and a generator. However, there is another less established form of electric vehicle which is the ‘plug-in hybrid’. This ‘plug-in hybrid’ attempts to combine the benefits of both these designs and allows the moderate capacity batteries of a hybrid vehicle to be recharged not only from the internal combustion engine and generator.

Electric Vehicles include electric wheelchairs, the Segway HT, electric motorcycles and scooters, motorized bicycles, golf carts and neighborhood electric vehicles. Furthermore some working electric vehicles include heavy work equipment, fork lifts, and numerous other service and support vehicles. Thus, if you are an environment conscious then electric vehicle is best for you.

Electric Vehicle Connectors

Green is no longer just a color; it’s a movement rooted in environmentalism and sustainability. As people around the world have realized that we need to protect the planet if we want it to stay healthy and beautiful for future generations, more and more products have entered the market to push the green movement forward. Electric cars are one of those developments, giving consumers the choice to be more environmentally friendly in their everyday transportation. Although most Americans own and use gas-powered cars, electric vehicles are growing in popularity and as their technology progresses, they will become even more convenient and appreciated. Electric vehicle connectors are an integral part of this new form of transportation; the cars need them to power up. But before we get into specifics, let’s look at the basics of electric vehicles.

Electric vehicles are a type of automobile that uses one or more electric motors or traction motors for propulsion. Unlike gas-powered cars, they are fueled by electricity, which can come from a variety of sources (fossil fuels and nuclear power, but also renewable sources like tidal, solar, and wind power). They require less maintenance because they don’t have as many parts as traditional vehicles, and they offer tax benefits. Electric vehicles are also easy to charge at home, run on renewable energy, and emit no pollution from their tailpipes. There are many benefits to owning an electric car, but like most things, they come with disadvantages too. Electric vehicles can take several hours to charge and aren’t able to last on long road trips. They will also increase the demand for electricity and there are very few models currently available.

Charging up an electric vehicle is easy, but it will require some patience. The most convenient (but also expensive) option would be to purchase a charging station for home use. If you charge your car overnight, it will always be ready for the morning commute.

To make the process of charging an electric car more convenient, national societies and commissions work together to establish industry standards for electric vehicle connectors. The common connector for the United States is the J1772 combo plug, which was chosen by the Society of Automotive Engineers. It allows for AC and DC charging, is 43mm in diameter, and contains five pins. Designed for single phase electrical systems with 120 V or 240 V, electric vehicle connectors use a 1 kHz square wave at +/- 12 volts on the pilot pin (to detect the vehicle, communicate the maximum allowable current, and control the charging process). These connectors will often be located outside, so it is important that they are able to withstand environmental concerns like wind, rain, and heat. They are also equipped with many safety features like shock protection, connector pins located on the inside (so humans have no physical access), and pins that have zero voltage when not in use.

Technological advancements and growing popularity are helping consumers see electric vehicles as a viable alternative to their gas-guzzling automobiles, but it will take a while longer for them to truly compete. Right now, electric cars are just a great alternative for environmentally conscious drivers looking to make a change.

How Are Electric Vehicles Charged?

Before buying an electric vehicle it is essential to gain familiarity with the necessary on-board equipment to prevent “charging” or, to use a current term, “top-up” problems.

It is important to check that the electric vehicle is fitted with a battery charger with a “standard” connection, i. e. suitable to draw electrical energy directly from ENEL’s grid and therefore from the power outlet in our garage. If it’s not then there is something wrong and you need to contact the seller.

This solution in the standard equipment fitted on an electric vehicle allows to charge the batteries in any place with mains electricity. Indeed electric cars have other various types of battery chargers. However, these do not allow to draw electricity from the mains supply but need special adapters or need to be connected directly to the charging points in service stations now available in large towns. The ideal solution is to have a battery charger on board the car with a high-frequency standard socket without the need to resort to external devices.

When taking into consideration an electric vehicle one needs to examine the costs to bear for the energy required to power the set of batteries. Models that allow to reduce energy costs are definitely the ones that allow to charge the batteries directly from the national domestic mains supply. Usually a full energy charge for a complete set of traction batteries for vehicles that draw energy directly from the mains supply does not cost more than 2 euros.

Vehicles fitted with a standard battery charger allow to optimise the time spent at home to charge the batteries. Indeed on average it takes 8 hours to fully charge a set of traction batteries. We recommend charging the entire set of batteries overnight, after the vehicle has been used during the day, in conjunction with the cheapest electricity tariff. It is also possible to charge the batteries for less time during the day for partial charges.

Partial charges do not result in problems affecting the runtime and/or efficiency of the set of batteries, as they are not subject to the memory effect. Precisely because they do not suffer from the memory effect, the set of batteries of electric vehicles has an average life of about 4 years.

A fully charged set of batteries of an electric vehicle allows for an uptime that varies between 70 and 100 km, depending on the model and set-up selected.

Electric Vehicle Conversion – Not Much Fun If Your Brakes Fail on You!

You can use almost any vehicle for your EV Conversion, but there are a couple of factors to consider when you are making your choice for a vehicle to use in a electric vehicle conversion.

The first consideration is whether the vehicle you wish to use has the capacity to carry the batteries which you need to drive your electric vehicle. There are two factors to consider here.

Firstly will the vehicle’s suspension be able to carry the weight of the batteries which you need to drive your vehicle. This situation can be worked around with the use of a different type of battery, however this is going to depend largely on your budget, as batteries with a higher energy density will almost certainly cost more. There are ways around that problem too though! The second issue is the problem of whether the batteries will fit into the space which you have available. In order to get the range and acceleration which you require from your electric vehicle, you will generally need about 20 12 volt lead acid batteries, there must be adequate space within the vehicle to store these batteries safely.

For the above reasons, light trucks are often the best choice for an electric vehicle conversion although strong light sedans can also be very successfully converted.

Secondly, you need to consider whether the vehicles braking system will be able to handle the additional weight added by the weight of the batteries. This is an important consideration as your safety and that of your family could be at stake if the brakes fail at a crucial time. The first thing to do to is to calculate the net weight difference once you have placed your battery set in your vehicle. To do this you need to know how many batteries you are using and what each one weighs, the supplier will be able to give you an average weight. When you know what the batteries and the motor weigh in total you can subtract the weight of all the old gas components from this weight to get a net weight, remember to add weight for a full tank of gas and with the radiator full. When you subtract the gas vehicle component’s weight from the motor and battery’s weight you have the net weight increase and can then determine what effect the additional weight will have on the braking system. If the additional weight is substantial, possibly over 500 pounds, then it may be advisable to consult a brake specialist in order to ensure that your brakes function properly when you need them to!

Two important considerations when putting together your electric vehicle conversion, the suspension capacity and the braking system. These two systems determine the comfort of your EV ride and the safety with which you can take that ride.